Problem 1.

Compute the following indefinite integrals.
(a) [5pts.]

$$
\int \tan ^{3}(x) d x
$$

Solution: Using the identity $\tan ^{2}(x)=\sec ^{2}(x)-1$, we compute

$$
\begin{aligned}
\int \tan ^{3}(x) d x & =\int \tan (x)\left(\sec ^{2}(x)-1\right) d x \\
& =\int \tan (x) \sec ^{2}(x) d x-\int \tan (x) d x \\
& =\frac{1}{2} \tan ^{2} x+\int \frac{-\sin x}{\cos x} d x \\
& =\frac{1}{2} \tan ^{2} x+\ln |\cos x|+C
\end{aligned}
$$

(b) [5pts.]

$$
\int \frac{5 d x}{(x-1)\left(x^{2}+4\right)}
$$

Solution: The partial fractions decomposition of the integrand is

$$
\frac{5 d x}{(x-1)\left(x^{2}+4\right)}=\frac{A}{x-1}+\frac{B x+C}{x^{2}+4}
$$

Solving this equation shows that $A=1, B=-1$, and $C=-1$. Therefore the integral may be computed as follows.

$$
\begin{aligned}
\int \frac{5 d x}{(x-1)\left(x^{2}+4\right)} & =\int \frac{d x}{x-1}-\int \frac{x+1}{x^{2}+4} d x \\
& =\ln |x-1|-\int \frac{x d x}{x^{2}+4}-\int \frac{d x}{x^{2}+4} \\
& =\ln |x-1|-\frac{1}{2} \ln \left|x^{2}+4\right|-\frac{1}{2} \tan ^{-1}\left(\frac{x}{2}\right)+C \\
& =\ln \left|\frac{x-1}{\sqrt{x^{2}+4}}\right|-\frac{1}{2} \tan ^{-1}\left(\frac{x}{2}\right)+C
\end{aligned}
$$

Problem 2.

(a) [4pts.] Find M_{4} and S_{4} for $\int_{1}^{2} \ln x d x$. You do not need to simplify your expressions.

Solution: We see $\Delta x=\frac{2-1}{4}=\frac{1}{4}$. Ergo

$$
\begin{aligned}
M_{4} & =\frac{1}{4}\left[\ln \left(\frac{9}{8}\right)+\ln \left(\frac{11}{8}\right)+\ln \left(\frac{13}{8}\right)+\ln \left(\frac{15}{8}\right)\right] \\
S_{4} & =\frac{1}{12}\left[\ln (1)+4 \ln \left(\frac{5}{4}\right)+2 \ln \left(\frac{3}{2}\right)+4 \ln \left(\frac{7}{4}\right)+\ln (2)\right]
\end{aligned}
$$

(b) [3pts.] Does M_{4} overestimate or underestimate the integral?

Solution: We see that $f(x)=\ln x$ is concave down on [1, 2], either by looking at the graph or noticing that $f^{\prime \prime}(x)=-\frac{1}{x^{2}}<0$. Therefore M_{4} is an overestimate.
(c) [3pts.] Compute an error bound for S_{4}.

Solution: Observe that the fourth derivative of $f(x)=\ln x$ is $f^{(4)}(x)=-\frac{6}{x^{4}}$. Therefore the maximum value of $\left|f^{(4)}(x)\right|$ on $[1,2]$ is $K_{4}=6$. So we compute

$$
\begin{aligned}
\operatorname{Error}\left(S_{4}\right) & \leq \frac{K_{4}(2-1)^{5}}{180\left(4^{4}\right)} \\
& =\frac{6(1)}{180 \cdot 256} \\
& =\frac{1}{30 \cdot 256} \\
& =\frac{1}{7680} \\
& \approx .00013
\end{aligned}
$$

Problem 3. 8pts.
A metal plate in the shape of a right isosceles triangle with legs measuring 2 m is submerged vertically in a tank of water with the right angle touching the surface as shown. Calculate the force on one side of the plate. The density of water is $10^{3} \mathrm{~kg} / \mathrm{m}^{3}$, and acceleration due to gravity is $9.8 \mathrm{~m} / \mathrm{s}^{2}$.

Solution: The height of the triangle is $\sqrt{2} \mathrm{~m}$ and the base length of is $2 \sqrt{2} \mathrm{~m}$. By similar triangles, the width of the triangle at depth y is $f(y)=2 y$. Moreover, the pressure exerted by the water at depth y is $P=\rho g y=9800 y \mathrm{~Pa}$. Therefore the
following integral calculates the force on one side of the plate.

$$
\begin{aligned}
9800 \int_{0}^{\sqrt{2}} f(y) y d y & =9800 \int_{0}^{\sqrt{2}} 2 y^{2} d y \\
& =\left.\frac{19600}{3} y^{3}\right|_{0} ^{\sqrt{2}} \\
& =\frac{19600 \cdot 2 \sqrt{2}}{3} \\
& =\frac{39200 \sqrt{2}}{3} \mathrm{~N} \\
& \approx 18480 \mathrm{~N}
\end{aligned}
$$

Problem 4.

Consider the infinite rotational solid generated by rotating the area under the curve $f(x)=\frac{1}{x}$ on $[1, \infty)$ around the x-axis.
(a) [4pts.] Set up (but do not attempt to evaluate!) an improper integral that gives the surface area of this solid.

Solution: We see $f^{\prime}(x)=-\frac{1}{x^{2}}$, so

$$
\begin{aligned}
S A & =2 \pi \int_{1}^{\infty} f(x) \sqrt{1+f^{\prime}(x)^{2}} d x \\
& =2 \pi \int_{1}^{\infty} \frac{1}{x} \sqrt{1+\frac{1}{x^{4}}} d x
\end{aligned}
$$

(b) [4pts.] Decide whether the integral you found in part (a) converges or diverges.

Solution: We observe that $\frac{1}{x} \sqrt{1+\frac{1}{x^{4}}}>\frac{1}{x}>0$, so by the Comparison Test, since $\int_{1}^{\infty} \frac{d x}{x}$ diverges, so does our surface area integral. Therefore the surface area is infinite.
(c) [4pts.] Recall that an expression for the volume of the trumpet is $V=\pi \int_{1}^{\infty} \frac{d x}{x^{2}}$. Does the volume converge or diverge? If it converges, what is it?

Solution: By the p-integral test, the volume converges to $\pi\left(\frac{1^{1-2}}{2-1}\right)=\pi$. Thus the volume is finite. This rotational solid is called Torricelli's Trumpet or the Horn of Gabriel.

Problem 5.

(a) [3pts.] Find the Taylor polynomials $T_{n}(x)$ for $f(x)=x e^{x}-e^{x}$ centered around $x=0$.

Solution: We compute

$$
\begin{aligned}
f(x) & =x e^{x}-e^{x} & & f(0)=-1 \\
f^{\prime}(x) & =x e^{x}+e^{x}-e^{x}=x e^{x} & & f^{\prime}(0)=0 \\
f^{\prime \prime}(x) & =x e^{x}+e^{x} & & f^{\prime \prime}(0)=1 \\
f^{(3)}(x) & =x e^{x}+2 e^{x} & & f^{(3)}(0)=2 \\
f^{(k)}(x) & =x e^{x}+(k-1) e^{x} & & f^{(k)}(0)=k-1
\end{aligned}
$$

We conclude that for $k \geq 2$, the coefficient on the term $(x-0)^{k}$ in the Taylor polynomials of f is $\frac{f^{(k)}(0)}{k!}=\frac{k-1}{k!}=\frac{1}{k \cdot(k-2)!}$. Ergo the Taylor polynomials $T_{n}(x)$ are

$$
T_{n}(x)=-1+\frac{1}{2} x^{2}+\frac{1}{3} x^{3}+\frac{1}{4 \cdot 2!} x^{4}+\cdots \frac{1}{n \cdot(n-2)!} x^{n} .
$$

(b) [4pts.] Find a bound for the error $\left|T_{n}(1)-f(1)\right|$, for $n \geq 1$.

Solution: For $n \geq 1,\left|f^{(n+1)}(x)\right|=\left|x e^{x}+(n) e^{x}\right|<(n+1) e=K$ on $[0,1]$; that is, all the derivatives are increasing functions that take their maximum value at 1. So our error bound is

$$
\begin{aligned}
\left|T_{n}(1)-f(1)\right| & \leq K \cdot \frac{|1-0|^{n+1}}{(n+1)!} \\
& =(n+1) e \cdot \frac{1}{(n+1)!} \\
& =\frac{e}{n!}
\end{aligned}
$$

(c) [3pts.] Find an n such that $\left|T_{n}(1)-f(1)\right|<\frac{1}{100}$. [Hint: Start by slightly increasing the bound you found in part (b) to have an integer in the numerator.]

Solution: Notice that $\frac{e}{n!}<\frac{3}{n!}$, so it suffices to choose n such that $\frac{3}{n!}<\frac{1}{100}$. If $n=6$, we have $\frac{3}{n!}=\frac{1 \cdot}{2 \cdot 4 \cdot 5 \cdot 6}=\frac{1}{240}<\frac{1}{100}$.

